#534 in Science & math books

Reddit mentions of Abstract Algebra: A Student-Friendly Approach

Sentiment score: 3
Reddit mentions: 5

We found 5 Reddit mentions of Abstract Algebra: A Student-Friendly Approach. Here are the top ones.

Abstract Algebra: A Student-Friendly Approach
Buying options
View on Amazon.com
or
Specs:
Height11 Inches
Length8.5 Inches
Number of items1
Weight0.0041226442994 Pounds
Width0.82 Inches

idea-bulb Interested in what Redditors like? Check out our Shuffle feature

Shuffle: random products popular on Reddit

Found 5 comments on Abstract Algebra: A Student-Friendly Approach:

u/blaackholespace · 18 pointsr/math

> Mathematical Logic

It's not exactly Math Logic, just a bunch of techniques mathematicians use. Math Logic is an actual area of study. Similarly, actual Set Theory and Proof Theory are different from the small set of techniques that most mathematicians use.

Also, looks like you have chosen mostly old, but very popular books. While studying out of these books, keep looking for other books. Just because the book was once popular at a school, doesn't mean it is appropriate for your situation. Every year there are new (and quite frankly) pedagogically better books published. Look through them.

Here's how you find newer books. Go to Amazon. In the search field, choose "Books" and enter whatever term that interests you. Say, "mathematical proofs". Amazon will come up with a bunch of books. First, sort by relevance. That will give you an idea of what's currently popular. Check every single one of them. You'll find hidden jewels no one talks about. Then sort by publication date. That way you'll find newer books - some that haven't even been published yet. If you change the search term even slightly Amazon will come up with completely different batch of books. Also, search for books on Springer, Cambridge Press, MIT Press, MAA and the like. They usually house really cool new titles. Here are a couple of upcoming titles that might be of interest to you: An Illustrative Introduction to Modern Analysis by Katzourakis/Varvarouka, Understanding Topology by Shaun Ault. I bet these books will be far more pedagogically sound as compared to the dry-ass, boring compendium of facts like the books by Rudin.

If you want to learn how to do routine proofs, there are about one million titles out there. Also, note books titled Discrete Math are the best for learning how to do proofs. You get to learn techniques that are not covered in, say, How to Prove It by Velleman. My favorites are the books by Susanna Epp, Edward Scheinerman and Ralph Grimaldi. Also, note a lot of intro to proofs books cover much more than the bare minimum of How to Prove It by Velleman. For example, Math Proofs by Chartrand et al has sections about doing Analysis, Group Theory, Topology, Number Theory proofs. A lot of proof books do not cover proofs from Analysis, so lately a glut of new books that cover that area hit the market. For example, Intro to Proof Through Real Analysis by Madden/Aubrey, Analysis Lifesaver by Grinberg(Some of the reviewers are complaining that this book doesn't have enough material which is ridiculous because this book tackles some ugly topological stuff like compactness in the most general way head-on as opposed to most into Real Analysis books that simply shy away from it), Writing Proofs in Analysis by Kane, How to Think About Analysis by Alcock etc.

Here is a list of extremely gentle titles: Discovering Group Theory by Barnard/Neil, A Friendly Introduction to Group Theory by Nash, Abstract Algebra: A Student-Friendly Approach by the Dos Reis, Elementary Number Theory by Koshy, Undergraduate Topology: A Working Textbook by McClusckey/McMaster, Linear Algebra: Step by Step by Singh (This one is every bit as good as Axler, just a bit less pretentious, contains more examples and much more accessible), Analysis: With an Introduction to Proof by Lay, Vector Calculus, Linear Algebra, and Differential Forms by Hubbard & Hubbard, etc

This only scratches the surface of what's out there. For example, there are books dedicated to doing proofs in Computer Science(for example, Fundamental Proof Methods in Computer Science by Arkoudas/Musser, Practical Analysis of Algorithms by Vrajitorou/Knight, Probability and Computing by Mizenmacher/Upfal), Category Theory etc. The point is to keep looking. There's always something better just around the corner. You don't have to confine yourself to books someone(some people) declared the "it" book at some point in time.

Last, but not least, if you are poor, peruse Libgen.

u/horserenoir1 · 12 pointsr/todayilearned

Please, simply disregard everything below if the info is old news to you.

------------

Algebraic geometry requires the knowledge of commutative algebra which requires the knowledge of some basic abstract algebra (consists of vector spaces, groups, rings, modules and the whole nine yards). There are many books written on abstract algebra like those of Dummit&Foote, Artin, Herstein, Aluffi, Lang, Jacobson, Hungerford, MacLane/Birkhoff etc. There are a million much more elementary intros out there, though. Some of them are:

Discovering Group Theory: A Transition to Advanced Mathematics by Barnard/Neil

A Friendly Introduction to Group Theory by Nash

Abstract Algebra: A Student-Friendly Approach by the Dos Reis

Numbers and Symmetry: An Introduction to Algebra by Johnston/Richman

Rings and Factorization by Sharpe

Linear Algebra: Step by Step by Singh

As far as DE go, you probably want to see them done rigorously first. I think the books you are looking for are titled something along the lines of "Analysis on Manifolds". There are famous books on the subject by Sternberg, Spivak, Munkres etc. If you don't know basic real analysis, these books will be brutal. Some elementary analysis and topology books are:

Understanding Analysis by Abbot

The Real Analysis Lifesaver by Grinberg

A Course in Real Analysis by Mcdonald/Weiss

Analysis by Its History by Hirer/Wanner

Introductory Topology: Exercises and Solutions by Mortad

u/fgtrytgbfc · 11 pointsr/Thetruthishere

Pick up mathematics. Now if you have never done math past the high school and are an "average person" you probably cringed.

Math (an "actual kind") is nothing like the kind of shit you've seen back in grade school. To break into this incredible world all you need is to know math at the level of, say, 6th grade.

Intro to Math:

  1. Book of Proof by Richard Hammack. This free book will show/teach you how mathematicians think. There are other such books out there. For example,

u/lamson12 · 3 pointsr/slatestarcodex

The process by which one acquires procedural knowledge is trial-and-error, but when that same process is deployed to learn declarative knowledge, it is often derided as "teaching to the test," as if that were somehow inferior to learning through other methods. Yet, when learning how to surf, the goal of learning how to balance on a surf board is not just to do so for its own sake, but rather to move on to more difficult things that rely on being able to balance.

Similarly, in designing good tests, (and here I focus on mathematics in particular), there is a lot of room for pointing out patterns, building up methods for solving problems, and invoking the common sense that is often put to the wayside when students are confronted with a mass of meaningless symbols that are pushed around in seemingly arbitrary ways.

Furthermore, once the upfront cost of creating questions is paid, the yield is more learning and indeed, learning that is personalized to where each student is at on the mastery curve. Lectures can only cover so much in a class period and are only genuinely useful (if that) to those in the middle of the distribution who have the necessary background knowledge and don't already know the material.

One text that serves as an example of this approach is an Abstract Algebra text designed for independent study.

u/AFK_Pikachu · 2 pointsr/learnmath

This is a really good intro/study guide. It explains proofs and the math concepts you'll need. It assumes no prior proof experience and would be good for self study for that reason.

https://www.amazon.com/Abstract-Algebra-Student-Friendly-Laura-Reis/dp/1539436071

Also brilliant.org has a cool group theory module but it doesn't really explain the proofs. Its also subscription based.