#5 in Mathematical logic books
Use arrows to jump to the previous/next product

Reddit mentions of Naive Set Theory (Undergraduate Texts in Mathematics)

Sentiment score: 6
Reddit mentions: 12

We found 12 Reddit mentions of Naive Set Theory (Undergraduate Texts in Mathematics). Here are the top ones.

Naive Set Theory (Undergraduate Texts in Mathematics)
Buying options
View on Amazon.com
or
    Features:
  • 100 Breakable Caps
  • 10 FREE with this buy
  • Excellent for Powerliffting
  • Excellent for Weight Lifting
  • Excellent for Sports and First Aid
Specs:
Height9.21 Inches
Length6.14 Inches
Number of items1
Weight0.76720867176 Pounds
Width0.31 Inches

idea-bulb Interested in what Redditors like? Check out our Shuffle feature

Shuffle: random products popular on Reddit

Found 12 comments on Naive Set Theory (Undergraduate Texts in Mathematics):

u/mlitchard · 31 pointsr/AskReddit

I was once a teacher's aide for an autistic teen. He seemed very bored with the 3rd grade arithmetic the teacher thought was his limit. One day, we had some extra time. I asked him if he wanted to read my set theory book. It's difficult to assess consent and comprehension, but we have our ways. I figured out that not only did he like this book, but he could follow along. It took about 3 months, but he was able to learn basics of sets. What makes me sad is the hard truth that people who know about this kind of math, generally don't find themselves being an educator for special needs students. His higher math education ended when I left. That's not right.

u/acetv · 14 pointsr/math

You are in a very special position right now where many interesing fields of mathematics are suddenly accessible to you. There are many directions you could head. If your experience is limited to calculus, some of these may look very strange indeed, and perhaps that is enticing. That was certainly the case for me.

Here are a few subject areas in which you may be interested. I'll link you to Dover books on the topics, which are always cheap and generally good.

  • The Nature and Power of Mathematics, Donald M. Davis. This book seems to be a survey of some history of mathematics and various modern topics. Check out the table of contents to get an idea. You'll notice a few of the subjects in the list below. It seems like this would be a good buy if you want to taste a few different subjects to see what pleases your palate.

  • Introduction to Graph Theory, Richard J. Trudeau. Check out the Wikipedia entry on graph theory and the one defining graphs to get an idea what the field is about and some history. The reviews on Amazon for this book lead me to believe it would be a perfect match for an interested high school student.

  • Game Theory: A Nontechnical Introduction, Morton D. Davis. Game theory is a very interesting field with broad applications--check out the wiki. This book seems to be written at a level where you would find it very accessible. The actual field uses some heavy math but this seems to give a good introduction.

  • An Introduction to Information Theory, John R. Pierce. This is a light-on-the-maths introduction to a relatively young field of mathematics/computer science which concerns itself with the problems of storing and communicating data. Check out the wiki for some background.

  • Lady Luck: The Theory of Probability, Warren Weaver. This book seems to be a good introduction to probability and covers a lot of important ideas, especially in the later chapters. Seems to be a good match to a high school level.

  • Elementary Number Theory, Underwood Dudley. Number theory is a rich field concerned with properties of numbers. Check out its Wikipedia entry. I own this book and am reading through it like a novel--I love it! The exposition is so clear and thorough you'd think you were sitting in a lecture with a great professor, and the exercises are incredible. The author asks questions in such a way that, after answering them, you can't help but generalize your answers to larger problems. This book really teaches you to think mathematically.

  • A Book of Abstract Algebra, Charles C. Pinter. Abstract algebra formalizes and generalizes the basic rules you know about algebra: commutativity, associativity, inverses of numbers, the distributive law, etc. It turns out that considering these concepts from an abstract standpoint leads to complex structures with very interesting properties. The field is HUGE and seems to bleed into every other field of mathematics in one way or another, revealing its power. I also own this book and it is similarly awesome. The exposition sets you up to expect the definitions before they are given, so the material really does proceed naturally.

  • Introduction to Analysis, Maxwell Rosenlicht. Analysis is essentially the foundations and expansion of calculus. It is an amazing subject which no math student should ignore. Its study generally requires a great deal of time and effort; some students would benefit more from a guided class than from self-study.

  • Principles of Statistics, M. G. Bulmer. In a few words, statistics is the marriage between probability and analysis (calculus). The wiki article explains the context and interpretation of the subject but doesn't seem to give much information on what the math involved is like. This book seems like it would be best read after you are familiar with probability, say from Weaver's book linked above.

  • I have to second sellphone's recommendation of Naive Set Theory by Paul Halmos. It's one of my favorite math books and gives an amazing introduction to the field. It's short and to the point--almost a haiku on the subject.

  • Continued Fractions, A. Ya. Khinchin. Take a look at the wiki for continued fractions. The book is definitely terse at times but it is rewarding; Khinchin is a master of the subject. One review states that, "although the book is rich with insight and information, Khinchin stays one nautical mile ahead of the reader at all times." Another review recommends Carl D. Olds' book on the subject as a better introduction.

    Basically, don't limit yourself to the track you see before you. Explore and enjoy.
u/KontraMantra · 12 pointsr/AcademicPhilosophy

In response to the same question, my Logic professor suggested:

u/functor7 · 7 pointsr/math

There are a few options. Firstly, if you are more familiar using infinity in the context of Calculus, then you might want to look into Real Analysis. These subjects view infinity in the context of limits on the real line and this is probably the treatment you are probably most familiar with. For an introductory book on the subject, check out Baby Rudin (Warning: Proofs! But who doesn't like proofs, that's what math is!)

Secondly, you might want to look at Projective Geometry. This is essentially the type of geometry you get when you add a single point "at infinity". Many things benefit from a projective treatment, the most obvious being Complex Analysis, one of its main objects of study is the Riemann Sphere, which is just the Projective Complex Plane. This treatment is related to the treatment given in Real Analysis, but with a different flavor. I don't have any particular introductory book to recommend, but searching "Introductory Projective Geometry" in Amazon will give you some books, but I have no idea if they're good. Also, look in your university library. Again: Many Proofs!

The previous two treatments of infinity give a geometric treatment of the thing, it's nothing but a point that seems far away when we are looking at things locally, but globally it changes the geometry of an object (it turns the real line into a circle, or a closed line depending on what you're doing, and the complex plane into a sphere, it gets more complicated after that). But you could also look at infinity as a quantitative thing, look at how many things it takes to get an infinite number of things. This is the treatment of it in Set Theory. Here things get really wild, so wild Set Theory is mostly just the study of infinite sets. For example, there is more than one type of infinity. Intuitively we have countable infinity (like the integers) and we have uncountable infinity (like the reals), but there are even more than that. In fact, there are more types of infinities than any of the infinities can count! The collection of all infinities is "too big" to even be a set! For an introduction into this treatment I recommend Suppes and Halmos. Set Theory, when you actually study it, is a very abstract subject, so there will be more proofs here than in the previous ones and it may be over your head if you haven't taken any proof-based courses (I don't know your background, so I'm just assuming you've taken Calc 1-3, Diff Eq and maybe some kind of Matrix Algebra course), so patience will be a major virtue if you wish to tackle Set Theory. Maybe ask some professors for help!

u/origin415 · 6 pointsr/math

I haven't read it myself, but I have heard Naive Set Theory recommended here several times before.

u/yggdrasilly · 3 pointsr/learnmath

Two great introductions are:

u/sellphone · 2 pointsr/math

Naive Set Theory if you want a more textbook approach, the book mentioned in my other response if you're looking for something more like a story with proofs.

u/edcba54321 · 1 pointr/math

Concepts of Modern Mathematics by Ian Stewart is an excellent book about modern math. As is Foundations and Fundamental Concepts of Mathematics by Howard Eves I would recommend these two along with the far more expensive Naive Set Theory by Halmos

u/brandoh2099 · 1 pointr/math

IMHO if you don't understand AC and its equivalents, then Jech is not the book you should be reading. That book is pretty heavy and is used (as far as I know - I have a handful of friends who work in set theory) as a research reference. Maybe read Naive Set Theory first. Despite its name, it's reasonably advanced but way more readable.