#40 in Probability & statistics books
Use arrows to jump to the previous/next product

Reddit mentions of Principles and Techniques in Combinatorics

Sentiment score: 3
Reddit mentions: 3

We found 3 Reddit mentions of Principles and Techniques in Combinatorics. Here are the top ones.

Principles and Techniques in Combinatorics
Buying options
View on Amazon.com
or
    Features:
  • Used Book in Good Condition
Specs:
Height9 Inches
Length6 Inches
Number of items1
Weight1.03 Pounds
Width0.65 Inches

idea-bulb Interested in what Redditors like? Check out our Shuffle feature

Shuffle: random products popular on Reddit

Found 3 comments on Principles and Techniques in Combinatorics:

u/speakwithaccent · 2 pointsr/math

Usual hierarchy of what comes after what is simply artificial. They like to teach Linear Algebra before Abstract Algebra, but it doesn't mean that it is all there's to Linear Algebra especially because Linear Algebra is a part of Abstract Algebra.

Example,

Linear Algebra for freshmen: some books that talk about manipulating matrices at length.

Linear Algebra for 2nd/3rd year undergrads: Linear Algebra Done Right by Axler

Linear Algebra for grad students(aka overkill): Advanced Linear Algebra by Roman

Basically, math is all interconnected and it doesn't matter where exactly you enter it.

Coming in cold might be a bit of a shocker, so studying up on foundational stuff before plunging into modern math is probably great.

Books you might like:

Discrete Mathematics with Applications by Susanna Epp

Learning to Reason: An Introduction to Logic, Sets, and Relations by Nancy Rodgers

Building Proofs: A Practical Guide by Oliveira/Stewart

Book Of Proof by Hammack

Mathematical Proofs: A Transition to Advanced Mathematics by Chartrand et al

How to Prove It: A Structured Approach by Velleman

The Nuts and Bolts of Proofs by Antonella Cupillary

How To Think About Analysis by Alcock

Principles and Techniques in Combinatorics by Khee-Meng Koh , Chuan Chong Chen

The Probability Tutoring Book: An Intuitive Course for Engineers and Scientists (and Everyone Else!) by Carol Ash

Problems and Proofs in Numbers and Algebra by Millman et al

Theorems, Corollaries, Lemmas, and Methods of Proof by Rossi

Mathematical Concepts by Jost - can't wait to start reading this

Proof Patterns by Joshi

...and about a billion other books like that I can't remember right now.

Good Luck.

u/igotthepancakes · 1 pointr/math

Thank you! This is exactly what I was looking for!!!! I didn't think anyone was going to give me a sufficient reply because there are a lot of books (sorry), but this is what I wanted. Where would you place the two books I linked, Principles and Techniques in Combinatorics and Introduction to Combinatorial Mathematics, Liu, in that list or would you consider studying them a redundant exercise? I also did not include this book in the list, but where would you place Problems from the Book and its accompanying Straight from the Book?

I will likely end up replacing the Graph Theory book I have in the list, by Berge, with Modern Graph Theory by Bellobas, since Berge doesn't have exercises, but I will assume it stays in the same order of the sequence.


I apologize for not initially including them. I did not realize that I did not. Also, are there any other topics you would recommend I cover for establishing a solid foundation. I didn't buy Rudin's Complex Analysis because I didn't know if that kind of thing was necessary. I don't even know what other branches of mathematics Complex Analysis relates to. There could be other topics I'm not aware of as well. Please don't hesitate to make more recommendations. I appreciate it.

u/[deleted] · 1 pointr/AskReddit

Author's name: http://www.amazon.com/Principles-Techniques-Combinatori-Chen-Chuan-Chong/dp/9810211392

I accept your apology.

Awesome book by the way.